skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "M. Hibbard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of an agent’s trajectories to an outside observer while guaranteeing the completion of a task expressed by a reward function. Focusing on finite-state controllers (FSCs) with deterministic memory transitions, we show that the maximum entropy of a POMDP is lower bounded by the maximum entropy of the parameteric Markov chain (pMC) induced by such FSCs. This relationship allows us to recast the entropy maximization problem as a so-called parameter synthesis problem for the induced pMC. We then present an algorithm to synthesize an FSC that locally maximizes the entropy of a POMDP over FSCs with the same number of memory states. In a numerical example, we highlight the benefit of using an entropy-maximizing FSC compared with an FSC that simply finds a feasible policy for accomplishing a task. 
    more » « less